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Abstract

We consider the situation where a basic preconditioner is improved with a coarse
grid correction. The latter can be implemented either additively (like in the standard
additive Schwarz method) or multiplicatively (like in the balancing preconditioner).
In [Numer. Lin. Alg. Appl., 15 (2008), pp. 355–372], Nabben and Vuik compare
both variants, and state that a theoretical comparison of the condition numbers is not
possible: whereas it is admitted that the condition number is in most cases smaller
with the multiplicative variant, they provide an example for which the converse is
true. Here we show that the multiplicative variant has in fact always lower condition
number when the basic preconditioner is appropriately scaled. On the other hand, we
also show, again assuming an appropriate scaling, that the condition number of the
additive variant is at worst a modest multiple of that of the multiplicative variant.
Hence both approaches are qualitatively equivalent. Eventually, we show with some
examples that both the upper and lower bounds on the condition number of the
additive variant are sharp: it can be in some cases equal to the condition number of
the multiplicative variant, and in other cases arbitrarily close to the aforementioned
modest multiple of this latter value.
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1 Introduction

We consider the iterative solution of large sparse n × n linear systems

Au = b (1.1)

with symmetric positive definite (SPD) coefficient matrix A . It is nowadays common
to combine the conjugate gradient method [11] with some SPD preconditioner M that
approximates the system matrix while remaining cheap to construct and invert, see, e.g.,
[1, 9, 23]. The convergence rate then mainly depends on the spectral condition number

κ(M−1A) =
λmax(M

−1A)

λmin(M−1A)
,

where λmax(·) and λmin(·) stand for the smallest and the largest eigenvalue, respectively.
In practical applications, A has often some very small eigenvalues, and standard pre-

conditioners may fail to move them sufficiently away from 0 ; i.e., M−1A has still some
fairly small eigenvalues. This may be cured by supplementing the action of the precondi-
tioner with a coarse grid correction step, in which an approximate solution of the residual
equation is computed on a coarser grid. This combination of basic preconditioner and
coarse grid correction is at the root of multigrid methods (e.g., [10, 26]), where the basic
preconditioner is called smoother. In the context of these methods, the number of coarse
unknowns is generally large and the coarse grid system is therefore solved only approxi-
mately, in fact combining again a smoothing iteration and a coarse grid correction (the
latter is thus used recursively).

Coarse grid correction is also used in a number of other methods. Often, the (first)
coarse grid has then sufficiently few unknowns to make affordable an exact solution of
the corresponding system (no need for recursive use). This includes domain decomposition
methods (e.g., [22, 24, 25]), where the coarse grid has usually only a few unknowns per sub-
domain, and also approaches where one attempts to approximate directly the eigenvectors
of M−1A corresponding to small eigenvalues [8, 28, 29, 30]; see also [20, 21].

Now, to define a corse grid correction one needs to set up a n × nc rectangular matrix
which “prolongates” on the fine grid a vector defined on a coarse grid with nc unknowns.
Ideally, the range of P should span a subspace containing good approximations of the
eigenmodes that are converging slowly with the basic preconditioner M . Given P , the
coarse grid correction step is implemented with

Bc = P (P TA P )−1P T .

There are basically two ways to combine it with the preconditioner M at hand. One is
additive and amounts to use as inverse preconditioner (that is, as approximation to A−1)

Ba = ω M−1 + P (P TA P )−1P T , (1.2)

where ω is a scaling parameter. This approach is followed in, e.g., [20, 21] and in standard
two-level additive Schwarz methods [3, 5, 6, 22, 24, 25]. Often, the scaling is applied
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instead to the coarse grid correction term. This is however unimportant when Ba is used
as preconditioner for the conjugate gradient method since then only the relative scaling of
both terms matters.

On the other hand, a multiplicative correction is obtained by first considering a station-
ary iteration with the basic preconditioner followed by a coarse grid correction step. The
resulting iteration matrix is

Tm = (I − P (P TA P )−1P T A) (I − ω M−1A) ,

and the equivalent inverse preconditioner is the matrix Bm such that I − BmA = Tm ,
which yields

Bm = P (P TA P )−1P T + ω M−1 − ω P (P TA P )−1P T A M−1 . (1.3)

This preconditioner is used, e.g., in the two-level hybrid Schwarz method as defined in [24,
Algorithm 2.3.5]. It is nonsymmetric and can therefore not be used with the conjugate
gradient method. A symmetric version is obtained by performing the coarse grid correction
twice; that is, defining the preconditioner Bms

such that I − Bms
A = Tms

with

Tms
= (I − P (P TA P )−1P T A) (I − ω M−1A) (I − P (P TA P )−1P T A) .

This yields

Bms
= P (P TA P )−1P T + ω (I−P (P T A P )−1P T A) M−1 (I−A P (P TA P )−1P T ) , (1.4)

which is used in the two-level hybrid Schwarz method as defined in [25, eq. (2.11)], and
in the balancing Neumann-Neumann domain decomposition methods [12, 13, 24, 25].
Because the form (1.4) first appeared in the latter context, this variant is sometimes
called balancing preconditioner. Bms

is in general more costly to apply than Bm but,
as pointed out in [25, Section 2.5.2], if one uses the conjugate gradient method with
u0 = P (P TA P )−1P Tb as initial approximation, all residual vectors are kept orthogonal to
the range of P and hence the application of Bms

requires in practice only the multiplication
by ω (I − P (P TA P )−1P T A) M−1 .

An important remark here is that BmA and Bms
A have identical eigenvalues. In-

deed, for any pair of square matrices F and G , F G and G F have same set of eigen-
values (see, e.g., [19, Lemma A.1] for a proof covering the case where both F and G
are singular). Therefore, Tms

= Tm(I − P (P TA P )−1P T A) has same eigenvalues as
(I − P (P TA P )−1P T A) Tm = Tm . Since Bms

is positive definite, the eigenvalues of BmA
are therefore real and positive, and one has in particular

λmax(BmA) = λmax(Bms
A) , λmin(BmA) = λmin(Bms

A)

and
κ(BmA) = κ(Bms

A) .
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In the following, we formulate our results with respect to the eigenvalues of Bms
A , but

one should keep in mind that they apply verbatim to BmA as well.
Now, in the context of multigrid methods, the number of coarse grid unknowns is rela-

tively large, so that the coarse grid correction step is much more costly than the application
of the basic preconditioner or smoother. Hence the symmetrization is rather performed
by applying smoothing iterations both before and after the coarse grid correction step. If
M1 is the pre-smoother and M2 the post-smoother, the iteration matrix for a two level
method is then

Tmg = (I − M−1

2
A) (I − P (P TA P )−1P T A) (I − M−1

1
A) ,

and the corresponding inverse preconditioner Bmg is defined from I −BmgA = Tmg . Here,
one may note that Tmg has same eigenvalues as

(I −P (P TA P )−1P T A) (I −M−1

1
A) (I −M−1

2
A) = (I −P (P TA P )−1P T A) (I −M−1A) ,

where M is the matrix such that

(I − M−1A) = (I − M−1

1
A) (I − M−1

2
A) ; (1.5)

that is, M is the equivalent preconditioner which brings in one step the effect of post-
smoothing followed by pre-smoothing. It follows that BmgA has same eigenvalues as BmA
(and Bms

A) with M defined in this way. Therefore, the analysis below also indirectly
applies to the more standard form of multigrid preconditioning. Note that this requires M
SPD, which is in fact a natural condition to ensure that Bmg is SPD, see, e.g., [7, 18].

Now, the purpose of this work is to compare the condition numbers κ(BaA) and
κ(Bms

A) associated with the additive and multiplicative variants. In, e.g., [25], it is sug-
gested that the multiplicative variant has always lower condition number, but in [17] an
example is provided showing that the converse can be true. Here we solve the issue by
taking into account the scaling parameter ω . It is indeed clear that multiplicative itera-
tion matrices like Tm or Tms

can be effective only if the basic preconditioner is properly
scaled. In fact, we prove that the multiplicative variant has always lower condition number
if ω λmax(M

−1A) is equal to or slightly larger than 1 . As discussed below, this condition
is not very strict and naturally satisfied (with ω = 1) by most preconditioners of practical
interest.

On the other hand, to our knowledge, there is so far no general bound on the condition
number of the additive variant that would depend only on the condition number of the mul-
tiplicative variant. Hence one could not guarantee anything for an additive implementation
using solely the convergence analysis of a method based on the multiplicative implemen-
tation (like, e.g., the analysis of the balancing Neumann-Neumann domain decomposition
method [25]). In this paper, we show on the contrary that κ(BaA) is at worst a modest
multiple of κ(Bms

A) . Here again, this requires a proper scaling of the basic preconditioner,
namely that ω λmax(M

−1A) ≈ 1 , the theoretical optimum ω = λmax(M
−1A)−1 yielding in

particular κ(BaA) ≤ 4 κ(Bms
A) .
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We have thus a two-sided bound on κ(BaA) . Eventually, we provide examples showing
that κ(BaA) may be arbitrarily close to either limit, and hence that both upper and lower
bounds are sharp.

Note that, besides the additive and multiplicative implementations referred above, a
coarse grid correction may also be used for deflation [8, 15, 28, 29, 30]. This amounts to
decompose the solution of the linear systems in two components, one in the range of P and
one in a complementary subspace. Since the former is easy to compute, the preconditioned
system can be deflated; that is, the iterative solution process is ran in a restricted subspace,
in which it has better (effective 1) condition number. We do not discuss this approach here
because we have little to add to the extensive comparison by Nabben and Vuik with the
additive and multiplicative variants [15, 16]. In fact, it is shown in [16] that the conjugate
gradient method combined with either the deflation or the symmetrized multiplicative
preconditioner Bms

produces identical iterates if the latter is used with the special starting
vector u0 = P (P TA P )−1P Tb mentioned above, whereas the zero vector is used as initial
approximation for deflation. Moreover, the spectrum of Bms

A is the spectrum of the
deflated system with, in addition, the eigenvalue 1. Hence both approaches are very close
to each other. Regarding the additive variant, the main result in [15] is a proof that
deflation always leads to lower condition number. A detailed analysis is also given for the
special case where the range of P coincides with an invariant subspace of A .

The paper is organized as follows. Our general analysis is developed in Section 2, and
is supplemented in Section 3 with the detailed investigation of two particular examples.

2 Analysis

The following theorem contains our main result.

Theorem 2.1 Let A , M be n × n SPD matrices and let P be a n × nc matrix of rank
nc < n . Let Ba , Bms

be given by (1.2), (1.4), respectively. Define

µ = λmax(M
−1A) · max

z∈ℜn\{0}

zT M
(

I − P (P TM P )−1P T M
)

z

zT A z
. (2.1)

One has µ ≥ 1 , and, setting λM = λmax(M
−1A) :

1. there holds

1 ≤ λmax(Bms
A) ≤ max(1 , ω λM) , (2.2)

λmin(Bms
A) = min

(

1 ,
ω λM

µ

)

(2.3)

and

max

(

µ

ω λM
, 1

)

≤ κ(Bms
A) ≤ max

(

µ

min(1, ω λM)
, ω λM

)

; (2.4)

1the deflated system has nc times the eigenvalue 0, which plays however no role in the solution process
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2. there holds

max(1 , ω λM) ≤ λmax(BaA) ≤ 1 + ω λM , (2.5)

ω λM

µ
≥ λmin(BaA) ≥

1

1 + ω λM

ω λM

µ
(2.6)

and
µ

min(1, ω λM)
≤ κ(BaA) ≤ µ

(1 + ω λM)2

ω λM

; (2.7)

3. there holds
κ(BaA) ≤ κ(Bms

A) (1 + ω λM)2 (2.8)

and, if ω λM ≤ µ ,
κ(BaA) ≥ κ(Bms

A) . (2.9)

Proof. Firstly, µ ≥ 1 because

µ = max
z

zT A z

zT M z
· max

z

zT M
(

I − P (P TM P )−1P T
)

z

zT A z

≥ max
z

zT M
(

I − P (P TM P )−1P T
)

z

zT M z
= 1 .

Next, by Theorem 2.1 in [19], Bms
A has nc times the eigenvalue 1, and the remaining n−nc

eigenvalues are the inverse of the nonzero eigenvalues of ω−1 A−1 M
(

I−P (P TM P )−1P T M
)

.
This yields straightforwardly (2.3) and the left inequality (2.2); the right inequality (2.2)
is proved in [19, Corollary 2.1]. Combining (2.3) and (2.2) yields

max

(

µ

ω λM

, 1

)

≤ κ(Bms
A) ≤ max(1 , ωλM) · max

(

1 ,
µ

ω λM

)

= max

(

1 , ω λM ,
µ

min(1, ω λM)

)

,

hence (2.4) since µ ≥ 1 .
On the other hand, λmax(BaA) cannot be smaller than the maximum of λmax(M

−1A)
and λmax(P A−1

c P TA) (= 1), and cannot be larger than their sum, hence (2.5). To prove
(2.6), let Ac = P T A P , Mc = P TM P and Sc = Ac + ω−1Mc . One has

(

ωM−1 + P A−1

c P T
) (

ω−1M − ω−2M P S−1

c P T M
)

= I + ω−1P (A−1

c − S−1

c − ω−1A−1

c McS
−1

c )P TM

= I + ω−1P A−1

c (Sc − Ac − ω−1Mc)S
−1

c P T M

= I ,
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hence B−1

a = ω−1M−ω−2M P S−1

c P TM (which could also be concluded from the Sherman-
Morrison-Woodbury formula, see, e.g, [9, p. 50]). Moreover,

ω−1(ωM−1

c − S−1

c ) Sc A−1

c Mc = ω−1(ωM−1

c Sc − I) A−1

c Mc = I ,

showing that

ωM−1

c − S−1

c = ω (Sc A−1

c Mc)
−1 = ω

(

Mc + ω−1McA
−1

c Mc

)−1

.

Therefore, plugging into the above expression of B−1

a the expression of S−1

c that can be
deduced from this relation, one obtains

B−1

a = ω−1
(

M − M P M−1

c P TM + M P (Mc + ω−1McA
−1

c Mc)
−1P TM

)

.

Hence, for any z ∈ ℜn\{0} ,

zT ω−1 M
(

I − P M−1

c P T
)

z

zT A z
≤

zT B−1

a z

zT A z

≤
zT ω−1 M

(

I − P M−1

c P T M
)

z + zT M PM−1

c AcM
−1

c P T M z

zT A z

and therefore, since Ac = P TA P ,

µ

ω λM

≤ λmax(A
−1B−1

a ) ≤
µ

ω λM

+ ‖P M−1

c P TM‖2

A .

Since λmax(A
−1B−1

a ) = λmin(BaA)−1 , this shows the left inequality (2.6). The right one also
follows because P M−1

c P T M is a projector, hence ‖P M−1

c P T M‖A = ‖I − P M−1

c P TM‖A

by Kato’s Lemma (e.g., [27, Lemma 3.6]), whereas, letting π = I − P M−1

c P TM ,

µ = λM · max
z

zT πT M π z

zT A z

= λM · max
z

zT πT M π z

zT πT A π z

zT πT A π z

zT A z

≥ λM · min
z

zT πT M π z

zT πT A π z
· max

z

zT πT A π z

zT A z

≥ ‖π‖2

A .

Eventually, the inequalities (2.7) are straightforward consequences of (2.5), (2.6), whereas
(2.8) is obtained by combining the right inequality (2.7) with the left inequality (2.4), and
(2.9) is obtained by combining the left inequality (2.7) with the right inequality (2.4) (the
given condition on ω ensuring that the maximum in the right hand side of (2.4) is the first
of the two terms, which is just the lower bound in (2.7)).

The upper bound (2.4) on κ(Bms
A) is minimal for any scaling factor ω such that

1 ≤ ω λM ≤ µ , (2.10)
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in which case (2.4) becomes

µ

ω λM
≤ κ(Bms

A) ≤ µ . (2.11)

With many preconditioners of practical interest, the largest eigenvalue of the precondi-
tioned system λmax(M

−1A) is slightly larger than 1 and the condition (2.10) is satisfied
without need for additional scaling. This includes incomplete LU factorization [14] and
additive Schwarz preconditioning [22, 24, 25]. More generally, preconditioning techniques
primarily aim at clustering the eigenvalues of M−1A around 1, and they are often success-
ful with respect to the largest eigenvalue. In fact, the above condition is restrictive only
if µ is pretty close to 1; that is, if the multiplicative preconditioner is extremely efficient
when the scaling parameter ω is chosen appropriately. This seldom occurs when the coarse
grid is coarse enough to allow an exact solution of the associated system. Regarding the
context of multigrid methods, note that M defined from (1.5) with M1 = MT

2
is such that

λmax(M
−1A) ≤ 1 , with λmax(M

−1A) ≈ 1 as soon as I − M−1A has some eigenvalue(s)
close to 0.

Now, considering also the lower bound on κ(Bms
A) , it may seem advantageous to

select ω such that ω λM approaches µ . Then, κ(Bms
A) may indeed be significantly smaller

than its upper bound. However, it follows from Statement 4 of Theorem 2.1 in [19] that
λmax(Bms

A) is in fact the maximum between 1 and the largest eigenvalue of ω A1/2M−1A1/2

projected orthogonally onto a given n−nc dimensional subspace. Hence if M−1A has many
eigenvalues close to the largest one (as often arises in practice), the upper bounds in (2.2),
(2.4) and (2.11) are likely very tight. Then one should not expect to really improve the
conditioning by raising ω up to the upper limit indicated in (2.10).

On the other hand, the lower bound (2.7) on κ(BaA) is optimal for any ω ≥ λ−1

M ,
whereas the upper bound is minimized when ω = λ−1

M . In the latter case, the condition
number of the additive preconditioner is at most four times that of the multiplicative
variant, which is itself equal to its optimal upper bound µ . As seen on an example below,
the scaling factor that effectively minimizes κ(BaA) may however differ from the best
theoretical value ω = λ−1

M . The additive variant is actually somehow sensitive to the
scaling of the basic preconditioner, in fact more than the multiplicative variant for which
only the condition (2.10) is important. This is a further advantage of the latter, besides a
lower condition number, which is guaranteed as soon as ω λM ≤ µ .

Now, the comparison in (2.8) (2.9) is for the same value of the scaling factor. If one
want to compare both variants allowing distinct scaling factors, one sees from (2.7) that
κ(BaA) is always larger than µ . Hence the condition number of the additive variant, even
with optimal scaling factor ω , can never be smaller than that of the multiplicative variant
if one uses the latter with a scaling factor satisfying the condition (2.10).
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3 Examples

Here we consider some simplified situations allowing an accurate analysis. We consider
prolongations of the form

P =

(

0
I

)

,

where the identity block is of size nc × nc . This occurs, e.g., when using a (generalized)
hierarchical basis [2, 4, 31]. We further restrict ourselves to M = I ; that is, the coarse
grid correction aims to accelerate simple Richardson iterations. Note that we have then

M
(

I − P (P TM P )−1P TM
)

=

(

I 0
0 0

)

. (3.1)

Example 1

In the first example, A is block diagonal in this hierarchical basis:

A =

(

A11

A22

)

.

This example is thus along the line of the analyses that consider the case where the columns
of P are (linear combinations of) the eigenvectors of A corresponding to the the nc smallest
eigenvalues [8, 15, 16, 20, 21]. Here we are slightly more general: we just assume, for the
sake of simplicity, that λmax(A11) ≥ λmax(A22) , and hence

λM = λmax(A) = λmax(A11) .

Because of this latter assumption we do not include the case n = 2 , nc = 1 , ω λmax(A11) =
ω λmin(A11) = 100 and ω λmax(A22) = ω λmin(A22) = 101 , which corresponds to the exam-
ple in [17] that demonstrates that additive coarse grid correction may lead to smaller
condition number. It is, however, clear that the latter result holds because the condition
(2.10) on the scaling is then far from being satisfied.

Now, one may check that

ω−1 A−1 M
(

I − P (P TM P )−1P TM
)

=

(

ω−1A−1

11
0

0 0

)

. (3.2)

Hence,
µ = κ(A11)

and further, since the eigenvalues of Bms
A are the inverse of the nonzero eigenvalues of the

matrix (3.2) plus nc times the eigenvalue 1 [19, Theorem 2.1], there holds

λmax(Bms
A) = max(ω λmax(A11) , 1) ,

λmin(Bms
A) = min(ω λmin(A11) , 1) .
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Therefore, one has
κ(Bms

A) = κ(A11) = µ

if
1

λmax(A11)
≤ ω ≤

1

λmin(A11)
,

which is nothing but the condition (2.10).
On the other hand, one straightforwardly obtains

λmax(BaA) = max(ω λmax(A11) , 1 + ω λmax(A22)) , (3.3)

λmin(BaA) = min(ω λmin(A11) , 1 + ω λmin(A22)) . (3.4)

Hence, one has also
κ(BaA) = κ(A11) = µ (3.5)

if the maximum in the right hand side of (3.3) is the first of the two terms, whereas the
minimum in the right hand side of (3.4) is also the first of the two terms. The former
condition is met if and only if ω ≥ (λmax(A11) − λmax(A22))

−1 , and the latter is satisfied
if and only if either λmin(A11) ≤ λmin(A22) or ω ≤ (λmin(A11)− λmin(A22))

−1 . Considering
both requirements altogether, (3.5) thus holds if either

λmin(A11) − λmin(A22) ≤ 0 and
1

λmax(A11) − λmax(A22)
≤ ω

or

0 ≤ λmin(A11) − λmin(A22) ≤ λmax(A11) − λmax(A22)

and
1

λmax(A11) − λmax(A22)
≤ ω ≤

1

λmin(A11) − λmin(A22)
.

Hence if λmin(A11) − λmin(A22) ≤ λmax(A11) − λmax(A22) , the additive variant is as
efficient as the multiplicative one for some range of the scaling parameter ω . This range
can be wide, but it does not contain the value ω = λ−1

M that optimizes the upper bound in
(2.7). For this latter value,

κ(BaA) = κ(A11)

(

1 +
λmax(A22)

λmax(A11)

)

.

On the other hand, if λmin(A11)− λmin(A22) > λmax(A11)−λmax(A22) , one may check that
κ(BaA) > κ(A11) for any ω .

Example 2

To analyze the next example, the following lemma is useful.
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Lemma 3.1 The matrix

A =

(

a I CT

C b I

)

has extremal eigenvalues

λmax(A) =
a + b +

√

(a − b)2 + 4 ρ

2
,

λmin(A) =
a + b −

√

(a − b)2 + 4 ρ

2
,

where ρ = ρ(CT C) .

Proof. Let n1 , n2 be the size of the top left and bottom right blocks, respectively. Without
loss of generality (both blocks play a symmetric role), we assume n1 > n2 . From

det

((

B11 B12

B21 B22

))

= det(B11) det(B22 − B21B
−1

11
B12) ,

one finds, assuming λ 6= a ,

det(A − λ I) = det
(

(a − λ)In1

)

det
(

(b − λ)In2
− (a − λ)−1C CT

)

= (a − λ)n1−n2 det
(

(a − λ)(b − λ)In2
− C CT

)

.

Hence λ is an eigenvalue of A that is not equal to a if and only if

(a − λ)(b − λ) − νi = 0 ,

where νi is an eigenvalue of C CT . Noting that all these νi are nonnegative, one sees that
the largest λ ( 6= a) is obtained by taking the largest of the two roots with the largest νi ,
and that the smallest λ is obtained by taking the smallest of the two roots with again the
largest νi . The proof is completed by noting that a can be neither smaller than the given
expression for λmin(A) nor larger than the given expression for λmax(A) .

In our second example we consider

A =

(

(1 − α)I CT

C (1 − β)I

)

,

where C is any matrix of appropriate size and where α , β are positive parameters. We
also assume A scaled in such a way that λM = λmax(M

−1A) = λmax(A) = 1 . With the
above lemma, one may check that this holds if and only if

ρ = ρ(CT C) = α β . (3.6)

On the other hand, with this condition, Lemma 3.1 also implies

λmin(A) = 1 − α − β .
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Because the present study is restricted to symmetric positive definite matrices, we therefore
assume α + β < 1 . We also restrict ourselves to the case nc < n− nc , where nc is the size
of the bottom right block.

Now, (3.1) implies that

ω−1 A−1 M
(

I − P (P TM P )−1P T M
)

=

(

ω−1S−1

A 0
∗ 0

)

, (3.7)

where SA = (1 − α)I − (1 − β)−1CT C is the Schur complement of A taken with respect
to its bottom right block, and where the exact expression of the block denoted by a ∗ is
unimportant. It follows that

µ =
1

λmin ((1 − α)I − (1 − β)−1CT C)
=

1

1 − α − α β
1−β

=
1 − β

λmin(A)
.

Further, since the eigenvalues of Bms
A are the inverse of the nonzero eigenvalues of the

matrix (3.7) plus nc times the eigenvalue 1 [19, Theorem 2.1], and since the condition
nc < n − nc implies that the smallest eigenvalue of CT C is equal to zero, one obtains

λmax(Bms
A) = max(1 , ω(1 − α))

and

λmin(Bms
A) = min

(

1 ,
ω λmin(A)

1 − β

)

= min

(

1 ,
ω

µ

)

.

Therefore, since µ(1 − α) > 1 , selecting ω in the interval

1

1 − α
≤ ω ≤ µ

implies
κ(Bms

A) = (1 − α)µ .

Here one can thus improve the condition number from the optimal upper bound µ by
choosing ω close to its upper limit in (2.10). Note, however, that

1 − α = λmin(A) + β = 1 − (µ − 1)λmin(A) .

Then, figure out that the present example mimics a realistic situation. A coarse grid
correction is useful if λmin(A) = κ(A)−1 is pretty small, and further one should have
µ ≪ λmin(A)−1 since otherwise the coarse grid correction would not be efficient. This
implies 1 − α ≈ 1 and the optimal condition number is not significantly smaller than µ .

On the other hand,

Ba =

(

ω I
(

ω + 1

1−β

)

I

)

,
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hence, letting ξ =

√

ω
(

ω + 1

1−β

)

,

B1/2

a A B1/2

a =

(

ω(1 − α)I ξ CT

ξ C (ω(1 − β) + 1) I

)

.

Lemma 3.1 then yields, with (3.1),

2 λmax

min

(BaA) = ω(2 − α − β) + 1 ±

√

(1 + ω(α − β))2 + 4 ξ2 ρ

= ω(1 + λmin(A)) + 1 ±

√

(1 + ω(α − β))2 + 4 ω2α β + 4 ω α β/(1 − β)

= ω(1 + λmin(A)) + 1 ±

√

(1 − ω(α + β))2 + 4 ω α(1 + β/(1 − β))

= ω(1 + λmin(A)) + 1 ±

√

(1 − ω + ω λmin(A))2 + 4 ω (1 − 1/µ) .

Now, assuming again λmin(A) ≪ µ−1 , one obtains

λmax

min

(BaA) ≈
ω + 1 ±

√

(1 − ω)2 + 4 ω(1− 1/µ)

2

=
ω + 1

2

(

1 ±

√

1 −
4 ω

µ(ω + 1)2

)

.

Further, if µ , despite being much smaller than λmin(A)−1 , remains relatively large, one
has

λmax(BaA) ≈ ω + 1 ,

λmin(BaA) ≈
ω

µ(ω + 1)

and hence

κ(BaA) ≈ µ
(ω + 1)2

ω
;

that is, κ(BaA) is close to its upper bound (2.7), and in fact can be made arbitrarily close
to it by selecting α , β such that λmin(A) is sufficiently small and µ sufficiently large.
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